Skip to main content

IoT Based LPG Gas Monitoring

MQ-5 Module(Overview)

In this tutorial, will learn, how to interface MQ-5 Module with Node Mcu(ESP8266).

The Grove - Gas Sensor(MQ5) module is useful for gas leakage detection (in home and industry). It is suitable for detecting H2, LPG, CH4, CO, Alcohol. Due to its high sensitivity and fast response time, measurements can be taken as soon as possible. The sensitivity of the sensor can be adjusted by using the potentiometer.

MQ-5 Module(backside)

Components Required
  • NodeMcu(ESP8266) 
  • MQ-5 LPG SENSOR Module 
  • Few male to female connecting wires 
  • Breadboard 
Follow the image below for circuit connection reference:-
In this circuit, we have connected the A0 pin of the MQ-5 to the A0 pin of the NodeMcu module and D0 pin remain disconnected.
After making the circuit dump the code given below:-

// Karkhana Report
// Analyse the volume of the gas using thingspeak.com
// Hardware: NodeMCU,MQ-5

#include <ESP8266WiFi.h>
String apiKey = "Enter the API key"; // Enter your Write API key from ThingSpeak
const char *ssid = "Enter ssid"; // replace with your wifi ssid and wpa2 key
const char *pass = "Enter password";
const char* server = "api.thingspeak.com";
WiFiClient client;
void setup()
{
Serial.begin(115200);
delay(10);
Serial.println("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, pass);
while (WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
}
void loop()
{
float h = analogRead(A0);
if (isnan(h))
{
Serial.println("Failed to read from MQ-5 sensor!");
return;
}

if (client.connect(server, 80)) // "184.106.153.149" or api.thingspeak.com
{
String postStr = apiKey;
postStr += "&field1=";
postStr += String(h);
postStr += "\r\n\";
client.print("POST /update HTTP/1.1\n");
client.print("Host: api.thingspeak.com\n");
client.print("Connection: close\n");
client.print("X-THINGSPEAKAPIKEY: " + apiKey + "\n");
client.print("Content-Type: application/x-www-form-urlencoded\n");
client.print("Content-Length: ");
client.print(postStr.length());
client.print("\n\n");
client.print(postStr);
Serial.print("Gas meter");
Serial.print(h);
Serial.println("%. Send to Thingspeak.");
}
client.stop();
Serial.println("Waiting...");

// thingspeak needs minimum 15 sec delay between updates, I've set it to 30 seconds
delay(3000);
}


After dumping the code we can check our output in the serial monitor as well as in the thingspeak blogging channel chart graphically as shown below:-


As you can see from the above logging figure we can check the LPG gas rate of Karkhana.

Thinking?
Join our hands-on training courses.
To know more visit us at Karkhana Makerspace

Comments

Popular posts from this blog

LED Brightness Control using Touch Sensor and ARM

Hey Folks, In this tutorial, we will learn, how to change  the intensity of light using touch sensor the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ADC (16 bit) DAC (1x 12bit) Touch Sensor

Arduino Based Piano Project

This video will illustrate to you how to make a simple piano by using IR Modules. Based on the frequency of sa, re, ga, ma, pa, dha, ni and sa the tone of the buzzer will change. Video Link Components Required: 1> I.R. Modules 2> Arduino Uno 3> Jumper Wires 4>Small Breadboard Circuit Diagram Arduino Code: int button_C = 2; int button_D = 3; int button_E = 4; int button_F = 5; int button_G = 6; int button_A = 7; int button_B = 8; int button_Cup = 9; int speaker = 10; int buttonstate_C = 0; int buttonstate_D = 0; int buttonstate_E = 0; int buttonstate_F = 0; int buttonstate_G = 0; int buttonstate_A = 0; int buttonstate_B = 0; int buttonstate_Cup = 0; //NOTES         'c'  , 'd',  'e',  'f',  'g', 'a',  'b',  'C' int tones[] = { 240, 254, 285, 320, 359, 280, 427, 956 }; //freq int Cur_tone = 0; void setup() {   pinMode(button_C, OUTPUT);   pinMode(button_D, INPUT);   pinMode(button_E, INP

Arduino Based Dancing Robo

Hello Makers This Blog is about making a generic dancing bot which will move his hand entertainingly responsive to interruptions. Video Link Components you need: Arduino UNO  ( Click here to Buy Arduino UNO ) I.R. Module ( Click here to buy IR Module ) Servo-2 ( Click here to buy servos ) Jumper Wire ( Click here to buy jumper wire ) Cardboard ( Click here to buy cardboard ) Follow the steps and do the connections As given in Video Arduino Code : Servo myServo0;     //Object Name of your first Servo Servo myServo1;     //Object Name of your Second Servo int a;              //Variable to Store Value of IR int count = 0;      //A Counter Variable void setup() {   // put your setup code here, to run once:   myServo.attach(3);   //Attaching pin No. of first Servo will be 3   myServo1.attach(4);  //Attaching pin No. of first Servo will be 4   pinMode(5, INPUT);   //Attaching pin No. of IR   Serial.begin(9600);  //To Start your Serial Monitor } void loop() {   // put