Skip to main content

Posts

Showing posts with the label Led blinking

Arduino Based Piano Project

This video will illustrate to you how to make a simple piano by using IR Modules. Based on the frequency of sa, re, ga, ma, pa, dha, ni and sa the tone of the buzzer will change. Video Link Components Required: 1> I.R. Modules 2> Arduino Uno 3> Jumper Wires 4>Small Breadboard Circuit Diagram Arduino Code: int button_C = 2; int button_D = 3; int button_E = 4; int button_F = 5; int button_G = 6; int button_A = 7; int button_B = 8; int button_Cup = 9; int speaker = 10; int buttonstate_C = 0; int buttonstate_D = 0; int buttonstate_E = 0; int buttonstate_F = 0; int buttonstate_G = 0; int buttonstate_A = 0; int buttonstate_B = 0; int buttonstate_Cup = 0; //NOTES         'c'  , 'd',  'e',  'f',  'g', 'a',  'b',  'C' int tones[] = { 240, 254, 285, 320, 359, 280, 427, 956 }; //freq int Cur_tone = 0; void setup() {   pinMode(button_C, OUTPUT);   pinMode(button_D, INPUT);   p...

8x8 LED Matrix Interfacing with Arduino

This will teach you how to control individual led in 8X8 LED MATRIX using Android App. Video Link   COMPONENTS REQUIRED 1. 8X8 LED MATRIX 2. Breadboard 3. Arduino Nano 4. Connecting Wires 5. Bluetooth HC-05  CONNECTION Connect as given in circuit Diagram ARDUINO Code  #include <Led.h> int DIN = 2; int CS =  3; int CLK = 4; int row=0; int col=0; int temp=0; int data=0; LedControl lc=LedControl(DIN,CLK,CS,1); void setup() {    lc.shutdown(0,false);       lc.setIntensity(0,5);  lc.clearDisplay(0);  Serial.begin(9600); } void loop() {    if(Serial.available() > 0)        {       data = Serial.read();       Serial.print(data);// it returns ascii value if we send one in the phone                   ...

LED Brightness Control using Touch Sensor and ARM

Hey Folks, In this tutorial, we will learn, how to change  the intensity of light using touch sensor the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ...

Soil Moisture Monitoring using ESP8266 and Soil Moisture Sensor

Hey folks In this tutorial, we will learn how to interface LM393 module(Soil Moisture Sensor)with NodeMcu(ESP8266). LM393 is a simple water sensor can be used to detect soil moisture when the soil moisture deficit module plant waterer device, so that the plants in our garden without people to manage; Adjustable sensitivity adjust the digital potentiometer (shown in blue) Operating Voltage 3.3V-5V; Module Dual Output mode, a simple. LM393 Soli Moisture Sensor Module(over view)  Components Required: LM393 Soil Sensor  NodeMcu(ESP8266)  Connecting wires(male to male)  Breadboard  Follow the Image below for circuit connection reference:- (Interfacing all components)  Here Pin A0 of the moisture sensor module connects to pin A0 on the ESP8266 The GND pin on the moisture sensor module connects to a GND pin on the ESP8266 The VCC pin on the moisture sensor module connects to a 3v3 pin on the ESP8266 D0 pin remain disconnected After making th...

Servo Motor Control using ESP8266 and Blynk App

Hey folks,  In this tutorial we will learn how to interface Servo motor with NodeMcu(ESP8266)module and operate it with the Blynk app.  Servos  are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and a repetition rate. A  servo motor  can usually only turn 90° in either direction for a total of 180° movement. servo Motor (Back view)  Servo Motor (front view) Blynk  is a Platform with iOS and Android  apps  to control Arduino, Raspberry Pi and the likes over the Internet. It's a digital dashboard where you can build a graphic interface for your project by simply dragging and dropping widgets. (Blynk App) Components Required: Servo motor NodeMcu(ESP8266) Connecting wires(male to male) Breadboard    Follow the image below for circuit connection reference. (Servo Motor connecting wi...

Interfacing of Push Button With ATmega16

In this tutorial, we will learn how to interface a switch(push button) with ATMEGA16 using AVR studio. In the previous video, we learnt how to interface LEDs with ATMEGA16 using AVR studio. The push-button is a component that connects two points in a circuit when you press it. The example turns on an LED when you press the button. Here we have connected two push button to PORT C in  PC0 & PC1. And for LEDs connection please refer my previous blog. Components Required:- AVR Controller(Atmega16) LEDs Push Button Connecting Wires USBASP Programmer Dump the following code after connection  and select chip ATMEGA 16. #include<avr/io.h> #include<util/delay.h> void main()  {    DDRB=0b11111111;    int S1;    int S2;      while(1)    {     S1=PINC&0b00000001;     S2=PINC&0b00000010;     if(S1==0b00000001)     { ...

16x2 LCD Interfacing with Arduino

In this tutorial, we will learn, how to interface an LCD (liquid crystal display) with ARDUINO.  An LCD screen is an electronic display module having a flat panel display or we can say it’s an electronically modulated optical device that uses the light modulating properties of liquid crystals. We will interface a 16x2(16 columns and 2 rows) LCD. Other variations are also available like 8x1,10x2 etc. It is having a wide range of applications; they are also preferred over the 7-segment display as they are cheap, easily programmable and also have the leverage to display special characters. Now let us interface Components Required 16x2 LCD                   1No. Resistor 560ohms        1No. Potentiometer 10k      1No. Arduino UNO               1No. Few connecting wires Breadboard Follow the image below for circuit connection refe...

Servo Motor Interfacing with Arduino

In this tutorial, we will learn how to interface a servo motor using Arduino UNO. The motor inside the setup of a servo is attached by gears to the control wheel. When the motor rotates, the potentiometer’s resistance changes hence the control circuit can precisely regulate how much movement there is and in which direction. The motor’s speed is proportional to the difference between its actual position and desired position. When the shaft is near the desired position it turns slowly else fast. This is called proportional control. They are controlled by sending PWM (pulse width modulated) signals through the control wire. They are available in many sizes and are of three types Positional rotation  Continuous rotation  Linear The most common type is the positional rotational one. So now we are familiar with the motor let us interface it Components Required: Servo motor 1No Arduino UNO 1No Few connecting wires Breadboard Follow the video belo...