Skip to main content

Posts

Showing posts with the label Technologies

Arduino Based Acrylic Emblem Light

This Blog will illustrate to you how to make Color changing Emblen light using the PWM of Arduino. using this you can make your emblems look more attractive. Video Link Components Required 1> Arduino UNO 2> 12V RGB led strip 3> 2N2222 Transistor 4> 10K ohm Resistor 5> Jumper Wires 6> Small Breadboard 7> Acrylic Engraved Emblem 8>IC7805 Power Regulator Circuit Diagram  Arduino Code const int greenPin = 10 ; const int bluePin = 9 ; void setup () { // Start off with the LED off. setColourRgb ( 0 , 0 , 0 ); } void loop () { unsigned int rgbColour[ 3 ]; // Start off with red. rgbColour[ 0 ] = 255 ; rgbColour[ 1 ] = 0 ; rgbColour[ 2 ] = 0 ;

Arduino Based Piano Project

This video will illustrate to you how to make a simple piano by using IR Modules. Based on the frequency of sa, re, ga, ma, pa, dha, ni and sa the tone of the buzzer will change. Video Link Components Required: 1> I.R. Modules 2> Arduino Uno 3> Jumper Wires 4>Small Breadboard Circuit Diagram Arduino Code: int button_C = 2; int button_D = 3; int button_E = 4; int button_F = 5; int button_G = 6; int button_A = 7; int button_B = 8; int button_Cup = 9; int speaker = 10; int buttonstate_C = 0; int buttonstate_D = 0; int buttonstate_E = 0; int buttonstate_F = 0; int buttonstate_G = 0; int buttonstate_A = 0; int buttonstate_B = 0; int buttonstate_Cup = 0; //NOTES         'c'  , 'd',  'e',  'f',  'g', 'a',  'b',  'C' int tones[] = { 240, 254, 285, 320, 359, 280, 427, 956 }; //freq int Cur_tone = 0; void setup() {   pinMode(button_C, OUTPUT);   pinMode(button_D, INPUT);   pinMode(button_E, INP

Webcam Interfacing with Raspberry Pi

This tutorial is about the clicking photos and recording videos using "Logitech Webcam C110 with Raspberry Pi 3 Model B" Component Required: Rasberry Pi 3 Model B  Logitech Webcam C110  Adapter Charger micro USB-b Type 5v,2Amp  Connection Diagram: Step 1: Create a new folder First, we create a new folder just to store your photo and videos separately. Open the terminal. Command for creating new folder is "mkdir folder name" Step 2: Check everything is up-to-date To update your Raspberry Pi command is " sudo apt-get update ". And to upgrade your Raspberry Pi command is " sudo apt-get upgrade". Step 3: Check SSH and Camera enabled To make sure SSH and Camera enabled. Follow these two-steps. By this command, you can configure your SSH and Camera " sudo raspi-config ". Enable SSH. Enable Camera. Step 4: Check connection of Camera Make sure the camera is connected. Then run this command to make sure

LED Brightness Control using Touch Sensor and ARM

Hey Folks, In this tutorial, we will learn, how to change  the intensity of light using touch sensor the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ADC (16 bit) DAC (1x 12bit) Touch Sensor

Raspberry Pi - Voice Recording & Text-to-Speech

Raspberry Pi, This tutorial is about the Voice Recording and Test to speech Using Raspberry Pi. But First, let's have a small introduction about Raspberry Pi. Introduction Raspberry Pi 3 Model B System on Chip(SoC) What is System on Chip?                 - A complex IC that integrates the major functional elements into a single chip or chipset. Programmable processors On-chip memory Accelerating function hardware (e.g. GPU) Both hardware and Software Analog components Benefits of SoC                   - Reduce overall system cost                   - Increase performance                   - Lower power consumption                   - Reduce size Soc in Raspberry Pi: Broadcom BCCM2835 SoC Multimedia Processor CPU             - ARM 1176JZF-S (armv6k) 700MHz             - RISC Architecture and low power draw             - Not compatible with traditional PC software GPU             - Broadcom Video IV             -

Servo Motor Control using ESP8266 and Blynk App

Hey folks,  In this tutorial we will learn how to interface Servo motor with NodeMcu(ESP8266)module and operate it with the Blynk app.  Servos  are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and a repetition rate. A  servo motor  can usually only turn 90° in either direction for a total of 180° movement. servo Motor (Back view)  Servo Motor (front view) Blynk  is a Platform with iOS and Android  apps  to control Arduino, Raspberry Pi and the likes over the Internet. It's a digital dashboard where you can build a graphic interface for your project by simply dragging and dropping widgets. (Blynk App) Components Required: Servo motor NodeMcu(ESP8266) Connecting wires(male to male) Breadboard    Follow the image below for circuit connection reference. (Servo Motor connecting with NodeMcu) In this circuit, we have connect

RGB LED Using Accelerometer and ARM

Hey Folks, In this tutorial, we will learn, how to change the colour of RGB LED using accelerometer of the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ADC (16 bit) DAC (1x 12bit) Touch Se

IoT Based LPG Gas Monitoring

MQ-5 Module(Overview ) In this tutorial, will learn, how to interface MQ-5 Module with Node Mcu(ESP8266). The Grove - Gas Sensor(MQ5) module is useful for gas leakage detection (in home and industry). It is suitable for detecting H2, LPG, CH4, CO, Alcohol. Due to its high sensitivity and fast response time, measurements can be taken as soon as possible. The sensitivity of the sensor can be adjusted by using the potentiometer. MQ-5 Module(backside) Components Required NodeMcu(ESP8266)  MQ-5 LPG SENSOR Module  Few male to female connecting wires  Breadboard  Follow the image below for circuit connection reference:- In this circuit, we have connected the A0 pin of the MQ-5 to the A0 pin of the NodeMcu module and D0 pin remain disconnected. After making the circuit dump the code given below:- // Karkhana Report // Analyse the volume of the gas using thingspeak.com // Hardware: NodeMCU,MQ-5 #include <ESP8266WiFi.h> String apiKey = "Enter the API key

IoT Based Humidity and Temperature Logging

Hey Folks, In this tutorial, we will learn, how to interface DHT 11 with Node Mcu(ESP8266 ).   The  DHT11  is a basic, ultra low-cost digital temperature and humidity sensor. It uses a capacitive humidity sensor and a thermistor to measure the surrounding air and spits out a digital signal on the data pin (no analog input pins needed). DHT11 Back Side DHT11-Internal Sensor Components Required NodeMcu(ESP8266)  DHT 11 SENSOR  Few male to female connecting wires  Breadboard Follow the image below for circuit connection reference. DHT11 Sensor connection with NodeMCU(WiFi-Module) In this circuit, we have connected the output pin to the D3 pin of the NodeMcu module and NC pin remain disconnected. After making the circuit dump the code given below. // Karkhana Report // temperature and humidity data using thingspeak.com // Hardware: NodeMCU,DHT11 #include <DHT.h> // Including library for dht #include <ESP8266WiFi.h> String apiKey = "TH