Skip to main content

Arduino Based Audio Spectrum Analyzer Project

This Video will illustrate you how to visualize audio left and right signals in bar-graph in 16X2 LCD Display using Arduino.

Components Required:

1. Arduino UNO

2. 16X2 LCD Display

3. 3.5mm Audio Jack

4. Jumper Wires

 

Connection Diagram:

Arduino Code

#include <LiquidCrystal.h>
#include <fix_fft.h>

#define DEBUG 0
#define L_IN 1 // Audio input A0 Arduino
#define R_IN 0 // Audio input A1 Arduino

const int Yres = 8;
const int gain = 3;
float peaks[64];
char im[64], data[64];
char Rim[64], Rdata[64];
char data_avgs[64];
int debugLoop;
int i;
int load;

LiquidCrystal lcd(11, 10, 7, 6, 5, 4); // pins to LCD

// Custom CHARACTERS
byte v1[8] = {
  B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111
};
byte v2[8] = {
  B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111
};
byte v3[8] = {
  B00000, B00000, B00000, B00000, B00000, B11111, B11111, B11111
};
byte v4[8] = {
  B00000, B00000, B00000, B00000, B11111, B11111, B11111, B11111
};
byte v5[8] = {
  B00000, B00000, B00000, B11111, B11111, B11111, B11111, B11111
};
byte v6[8] = {
  B00000, B00000, B11111, B11111, B11111, B11111, B11111, B11111
};
byte v7[8] = {
  B00000, B11111, B11111, B11111, B11111, B11111, B11111, B11111
};
byte v8[8] = {
  B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111
};

void setup() {

  if (DEBUG) {
    Serial.begin(9600); // hardware serial
    Serial.print("Debug ON");
    Serial.println("");
  }

  lcd.begin(16, 2);
  lcd.clear();
  lcd.createChar(1, v1);
  lcd.createChar(2, v2);
  lcd.createChar(3, v3);
  lcd.createChar(4, v4);
  lcd.createChar(5, v5);
  lcd.createChar(6, v6);
  lcd.createChar(7, v7);
  lcd.createChar(8, v8);

  for (i=0;i<80;i++)
  {
    for (load = 0; load < i / 5; load++)
    {
      lcd.setCursor(load, 1);
      lcd.write(5);
    }
    if (load < 1)
    {
      lcd.setCursor(0, 1);
      lcd.write(5);
    }

    lcd.setCursor(load + 1, 1);
    lcd.write((i - i / 5 * 5) + 1);
    for (load = load + 2; load < 16; load++)
    {
      lcd.setCursor(load, 1);
      lcd.write(9);
    }
    lcd.setCursor(0, 0);
    lcd.print("LOADING.........");
    delay(50);
  }
  lcd.clear();
  delay(500);
}

void loop() {

  for (int i = 0; i < 64; i++) {    // 64 bins = 32 bins of usable spectrum data
    data[i]  = ((analogRead(L_IN) / 4 ) - 128);  // chose how to interpret the data from analog in
    im[i]  = 0;   // imaginary component
    Rdata[i] = ((analogRead(R_IN) / 4 ) - 128);  // chose how to interpret the data from analog in
    Rim[i] = 0;   // imaginary component
  }

  fix_fft(data, im, 6, 0);   // Send Left channel normalized analog values through fft
  fix_fft(Rdata, Rim, 6, 0); // Send Right channel normalized analog values through fft

  // At this stage, we have two arrays of [0-31] frequency bins deep [32-63] duplicate

  // calculate the absolute values of bins in the array - only want positive values
  for (int i = 0; i < 32; i++) {
    data[i] = sqrt(data[i]  *  data[i] +  im[i] *  im[i]);
    Rdata[i] = sqrt(Rdata[i] * Rdata[i] + Rim[i] * Rim[i]);

    // COPY the Right low-band (0-15) into the Left high-band (16-31) for display ease
    if (i < 16) {
      data_avgs[i] = data[i];
    }
    else {
      data_avgs[i] = Rdata[i - 16];
    }

    // Remap values to physical display constraints... that is, 8 display custom character indexes + "_"
    data_avgs[i] = constrain(data_avgs[i], 0, 9 - gain);     //data samples * range (0-9) = 9
    data_avgs[i] = map(data_avgs[i], 0, 9 - gain, 0, Yres);  // remap averaged values
  }

  Two16_LCD();
  decay(1);
}

void Two16_LCD() {
  lcd.setCursor(0, 0);
  lcd.print("L"); // Channel ID replaces bin #0 due to hum & noise
  lcd.setCursor(0, 1);
  lcd.print("R"); // ditto

  for (int x = 1; x < 16; x++) {  // init 0 to show lowest band overloaded with hum
    int y = x + 16; // second display line
    if (data_avgs[x] > peaks[x]) peaks[x] = data_avgs[x];
    if (data_avgs[y] > peaks[y]) peaks[y] = data_avgs[y];

    lcd.setCursor(x, 0); // draw first (top) row Left
    if (peaks[x] == 0) {
      lcd.print("_");  // less LCD artifacts than " "
    }
    else {
      lcd.write(peaks[x]);
    }

    lcd.setCursor(x, 1); // draw second (bottom) row Right
    if (peaks[y] == 0) {
      lcd.print("_");
    }
    else {
      lcd.write(peaks[y]);
    }
  }

  debugLoop++;
  if (DEBUG && (debugLoop > 99)) {
    Serial.print( "Free RAM = " );
    Serial.println( freeRam(), DEC);
    Serial.println( millis(), DEC);
    debugLoop = 0;
  }
}


int freeRam () {
  extern int __heap_start, *__brkval;
  int v;
  return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}


void decay(int decayrate) {
  int DecayTest = 1;
  // reduce the values of the last peaks by 1
  if (DecayTest == decayrate) {
    for (int x = 0; x < 32; x++) {
      peaks[x] = peaks[x] - 1;  // subtract 1 from each column peaks
      DecayTest = 0;
    }
  }

  DecayTest++;
}

Comments

Popular posts from this blog

Arduino Based Piano Project

This video will illustrate to you how to make a simple piano by using IR Modules. Based on the frequency of sa, re, ga, ma, pa, dha, ni and sa the tone of the buzzer will change. Video Link Components Required: 1> I.R. Modules 2> Arduino Uno 3> Jumper Wires 4>Small Breadboard Circuit Diagram Arduino Code: int button_C = 2; int button_D = 3; int button_E = 4; int button_F = 5; int button_G = 6; int button_A = 7; int button_B = 8; int button_Cup = 9; int speaker = 10; int buttonstate_C = 0; int buttonstate_D = 0; int buttonstate_E = 0; int buttonstate_F = 0; int buttonstate_G = 0; int buttonstate_A = 0; int buttonstate_B = 0; int buttonstate_Cup = 0; //NOTES         'c'  , 'd',  'e',  'f',  'g', 'a',  'b',  'C' int tones[] = { 240, 254, 285, 320, 359, 280, 427, 956 }; //freq int Cur_tone = 0; void setup() {   pinMode(button_C, OUTPUT);   pinMode(button_D, INPUT);   p...

Getting Started with Arduino

What is Arduino? Arduino is basically an open source electronics platform which is having easy to use hardware and software implementation. It’s a micro-controller interfaced with other vital components like programmer ICs, voltage regulator etc. With the help of this, we can interface various input (sensors) and output (LED's) components. Why Arduino? Arduino is not just a micro-controller it is also interfaced with several other components which make the job of the user very simple. Arduino Uno Pin-Out How Arduino works? An input of 5v is given to the board using a USB cable (not necessary) through a laptop or any other convenient power source. Microcontrollers are usually programmed through a programmer unless we have a firmware in our microcontroller that allows installing new firmware without any external programmer. This is bootloader. All the controllers present in UNO are from ATMEL Semiconductor (Now acquired by Microchip). We hav...