Skip to main content

Interfacing of Multicolor LED with Arduino


In this tutorial, we will learn how to interface an RGB led with Arduino.
An RGB led consist of three Led’s namely red, green and blue inside a single package.

It is having three pins the longer one(2) is the GND(in the case of the common cathode) and the other three pins represent the three colours.
You all must have heard about the RGB colour model, it is a model representing the colours that can be generated with the combination of three basic colours.
Now let’s interface the led and have some fun with it.
Components required
  • Resistor                         1No.              200 ohms
  • RGB led                         1No. 
  • Arduino UNO                 1No.
  • Few connecting wires
Follow the video below for circuit connection reference.
After making the circuit connections dump the code given below. 
int led1 = 3;
int led2 =5;
int led3 =6;
void setup() 

{
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
pinMode(led3, OUTPUT);
}
void loop() 

{
digitalWrite(led1, HIGH);
delay(1000);
digitalWrite(led1, LOW);
delay(1000);
digitalWrite(led2, HIGH);
delay(1000);
digitalWrite(led2, LOW);
delay(1000);
digitalWrite(led3, HIGH);
delay(1000);
digitalWrite(led3, LOW);
delay(1000);
digitalWrite(led3, LOW);
delay(1000);
}

 
The above code is to observe the basic colours; other combinations can also be generated.



Now apply your own logic and try to generate your own patterns.
  • RGB LEDs are of two types:
                 Common anode
                 The common cathode (which we have used in the tutorial)

Thinking?
Join our hands-on training courses.
To know more visit us at https://karkhana.club/

Comments

Popular posts from this blog

Soil Moisture Monitoring using ESP8266 and Soil Moisture Sensor

Hey folks In this tutorial, we will learn how to interface LM393 module(Soil Moisture Sensor)with NodeMcu(ESP8266). LM393 is a simple water sensor can be used to detect soil moisture when the soil moisture deficit module plant waterer device, so that the plants in our garden without people to manage; Adjustable sensitivity adjust the digital potentiometer (shown in blue) Operating Voltage 3.3V-5V; Module Dual Output mode, a simple. LM393 Soli Moisture Sensor Module(over view)  Components Required: LM393 Soil Sensor  NodeMcu(ESP8266)  Connecting wires(male to male)  Breadboard  Follow the Image below for circuit connection reference:- (Interfacing all components)  Here Pin A0 of the moisture sensor module connects to pin A0 on the ESP8266 The GND pin on the moisture sensor module connects to a GND pin on the ESP8266 The VCC pin on the moisture sensor module connects to a 3v3 pin on the ESP8266 D0 pin remain disconnected After making th...

Servo Motor Control using ESP8266 and Blynk App

Hey folks,  In this tutorial we will learn how to interface Servo motor with NodeMcu(ESP8266)module and operate it with the Blynk app.  Servos  are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and a repetition rate. A  servo motor  can usually only turn 90° in either direction for a total of 180° movement. servo Motor (Back view)  Servo Motor (front view) Blynk  is a Platform with iOS and Android  apps  to control Arduino, Raspberry Pi and the likes over the Internet. It's a digital dashboard where you can build a graphic interface for your project by simply dragging and dropping widgets. (Blynk App) Components Required: Servo motor NodeMcu(ESP8266) Connecting wires(male to male) Breadboard    Follow the image below for circuit connection reference. (Servo Motor connecting wi...

Webcam Interfacing with Raspberry Pi

This tutorial is about the clicking photos and recording videos using "Logitech Webcam C110 with Raspberry Pi 3 Model B" Component Required: Rasberry Pi 3 Model B  Logitech Webcam C110  Adapter Charger micro USB-b Type 5v,2Amp  Connection Diagram: Step 1: Create a new folder First, we create a new folder just to store your photo and videos separately. Open the terminal. Command for creating new folder is "mkdir folder name" Step 2: Check everything is up-to-date To update your Raspberry Pi command is " sudo apt-get update ". And to upgrade your Raspberry Pi command is " sudo apt-get upgrade". Step 3: Check SSH and Camera enabled To make sure SSH and Camera enabled. Follow these two-steps. By this command, you can configure your SSH and Camera " sudo raspi-config ". Enable SSH. Enable Camera. Step 4: Check connection of Camera Make sure the camera is connected. Then run this command to make sure...