Skip to main content

Interfacing of Potentiometer with Arduino

In this tutorial, we will learn how to control the brightness of a LED using potentiometers(Variable Resistor).
A potentiometer also known as the pot is a three-terminal resistor with sliding or rotating contact that forms an adjustable voltage divider, they can be also used as a rheostat or variable resistors.
Broadly there are two types of potentiometers available.
  •          The Rotary Pot - they use a rotary motion to move the slider around a track that compromises most of a circle, with contacts at either end of the track in the area where part of the circle is missing. They are widely used in appliances with knob control.
 
  •      The Sliding Pot -- they are those variable resistors that slide in a linear fashion,i.e in a straight line. These controls take up more front panel space but are much easier to use under some circumstances. for example, they are widely used for audio mixers and lighting desks.
      
 Now we know how a pot works let us have some fun with it
Components required
  • Resistor 1No. 330 ohms.
  • Arduino UNO 1No.
  • Potentiometer 1No.
  • Connecting wires.
For the circuit, reference follows the video below.
We have used a multimeter to make you understand how the voltage varies with resistance it’s an optional component.
After making the circuit dump the code given below and observe the output.

int led = 9;
int pot=A0;
int d,e;
void setup() 

{
Serial.begin(9600);
}
void loop()
{
d=analogRead(pot);
Serial.println(d);
e=d/4;
analogWrite(led, e);
}

  •   We can reverse the rotating function of a potentiometer by interchanging the VCC and GND supply pins. 
  •   In Arduino UNO A0-A5 pins can be used to read analog values like that of pot and pin no. 3,5,6,9,10,11 can be used as digital pins.
Thinking?

Join our hands-on training courses.
To know more visit us at https://karkhana.club/

Comments

Popular posts from this blog

Arduino Based Audio Spectrum Analyzer Project

This Video will illustrate you how to visualize audio left and right signals in bar-graph in 16X2 LCD Display using Arduino. Components Required: 1. Arduino UNO 2. 16X2 LCD Display 3. 3.5mm Audio Jack 4. Jumper Wires   Connection Diagram: Video Link Arduino Code #include <LiquidCrystal.h> #include <fix_fft.h> #define DEBUG 0 #define L_IN 1 // Audio input A0 Arduino #define R_IN 0 // Audio input A1 Arduino const int Yres = 8; const int gain = 3; float peaks[64]; char im[64], data[64]; char Rim[64], Rdata[64]; char data_avgs[64]; int debugLoop; int i; int load; LiquidCrystal lcd(11, 10, 7, 6, 5, 4); // pins to LCD // Custom CHARACTERS byte v1[8] = {   B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111 }; byte v2[8] = {   B00000, B00000, B00000, B00000, B00000, B00000, B00000, B11111 }; byte v3[8] = {   B00000, B00000, B00000, B00000, B00000, B11111, B11111, B11111 }; byte v4[8] = {   B0...

LED Brightness Control using Touch Sensor and ARM

Hey Folks, In this tutorial, we will learn, how to change  the intensity of light using touch sensor the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ...

Webcam Interfacing with Raspberry Pi

This tutorial is about the clicking photos and recording videos using "Logitech Webcam C110 with Raspberry Pi 3 Model B" Component Required: Rasberry Pi 3 Model B  Logitech Webcam C110  Adapter Charger micro USB-b Type 5v,2Amp  Connection Diagram: Step 1: Create a new folder First, we create a new folder just to store your photo and videos separately. Open the terminal. Command for creating new folder is "mkdir folder name" Step 2: Check everything is up-to-date To update your Raspberry Pi command is " sudo apt-get update ". And to upgrade your Raspberry Pi command is " sudo apt-get upgrade". Step 3: Check SSH and Camera enabled To make sure SSH and Camera enabled. Follow these two-steps. By this command, you can configure your SSH and Camera " sudo raspi-config ". Enable SSH. Enable Camera. Step 4: Check connection of Camera Make sure the camera is connected. Then run this command to make sure...