Skip to main content

Interfacing of Potentiometer with Arduino

In this tutorial, we will learn how to control the brightness of a LED using potentiometers(Variable Resistor).
A potentiometer also known as the pot is a three-terminal resistor with sliding or rotating contact that forms an adjustable voltage divider, they can be also used as a rheostat or variable resistors.
Broadly there are two types of potentiometers available.
  •          The Rotary Pot - they use a rotary motion to move the slider around a track that compromises most of a circle, with contacts at either end of the track in the area where part of the circle is missing. They are widely used in appliances with knob control.
 
  •      The Sliding Pot -- they are those variable resistors that slide in a linear fashion,i.e in a straight line. These controls take up more front panel space but are much easier to use under some circumstances. for example, they are widely used for audio mixers and lighting desks.
      
 Now we know how a pot works let us have some fun with it
Components required
  • Resistor 1No. 330 ohms.
  • Arduino UNO 1No.
  • Potentiometer 1No.
  • Connecting wires.
For the circuit, reference follows the video below.
We have used a multimeter to make you understand how the voltage varies with resistance it’s an optional component.
After making the circuit dump the code given below and observe the output.

int led = 9;
int pot=A0;
int d,e;
void setup() 

{
Serial.begin(9600);
}
void loop()
{
d=analogRead(pot);
Serial.println(d);
e=d/4;
analogWrite(led, e);
}

  •   We can reverse the rotating function of a potentiometer by interchanging the VCC and GND supply pins. 
  •   In Arduino UNO A0-A5 pins can be used to read analog values like that of pot and pin no. 3,5,6,9,10,11 can be used as digital pins.
Thinking?

Join our hands-on training courses.
To know more visit us at https://karkhana.club/

Comments

Popular posts from this blog

LED Brightness Control using Touch Sensor and ARM

Hey Folks, In this tutorial, we will learn, how to change  the intensity of light using touch sensor the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ADC (16 bit) DAC (1x 12bit) Touch Sensor

Arduino Based Piano Project

This video will illustrate to you how to make a simple piano by using IR Modules. Based on the frequency of sa, re, ga, ma, pa, dha, ni and sa the tone of the buzzer will change. Video Link Components Required: 1> I.R. Modules 2> Arduino Uno 3> Jumper Wires 4>Small Breadboard Circuit Diagram Arduino Code: int button_C = 2; int button_D = 3; int button_E = 4; int button_F = 5; int button_G = 6; int button_A = 7; int button_B = 8; int button_Cup = 9; int speaker = 10; int buttonstate_C = 0; int buttonstate_D = 0; int buttonstate_E = 0; int buttonstate_F = 0; int buttonstate_G = 0; int buttonstate_A = 0; int buttonstate_B = 0; int buttonstate_Cup = 0; //NOTES         'c'  , 'd',  'e',  'f',  'g', 'a',  'b',  'C' int tones[] = { 240, 254, 285, 320, 359, 280, 427, 956 }; //freq int Cur_tone = 0; void setup() {   pinMode(button_C, OUTPUT);   pinMode(button_D, INPUT);   pinMode(button_E, INP

Arduino Based Dancing Robo

Hello Makers This Blog is about making a generic dancing bot which will move his hand entertainingly responsive to interruptions. Video Link Components you need: Arduino UNO  ( Click here to Buy Arduino UNO ) I.R. Module ( Click here to buy IR Module ) Servo-2 ( Click here to buy servos ) Jumper Wire ( Click here to buy jumper wire ) Cardboard ( Click here to buy cardboard ) Follow the steps and do the connections As given in Video Arduino Code : Servo myServo0;     //Object Name of your first Servo Servo myServo1;     //Object Name of your Second Servo int a;              //Variable to Store Value of IR int count = 0;      //A Counter Variable void setup() {   // put your setup code here, to run once:   myServo.attach(3);   //Attaching pin No. of first Servo will be 3   myServo1.attach(4);  //Attaching pin No. of first Servo will be 4   pinMode(5, INPUT);   //Attaching pin No. of IR   Serial.begin(9600);  //To Start your Serial Monitor } void loop() {   // put