Skip to main content

Posts

Showing posts with the label Education

Servo Motor Control using ESP8266 and Blynk App

Hey folks,  In this tutorial we will learn how to interface Servo motor with NodeMcu(ESP8266)module and operate it with the Blynk app.  Servos  are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and a repetition rate. A  servo motor  can usually only turn 90° in either direction for a total of 180° movement. servo Motor (Back view)  Servo Motor (front view) Blynk  is a Platform with iOS and Android  apps  to control Arduino, Raspberry Pi and the likes over the Internet. It's a digital dashboard where you can build a graphic interface for your project by simply dragging and dropping widgets. (Blynk App) Components Required: Servo motor NodeMcu(ESP8266) Connecting wires(male to male) Breadboard    Follow the image below for circuit connection reference. (Servo Motor connecting with NodeMcu) In this circuit, we have connect

Alexa Based Motor Controlling

In this tutorial, we will learn how to interface DC Motor with NodeMcu by using Relay Module controlling with Alexa echo. with voice API. A DC motor is any of a class of rotary electrical machines that converts direct current electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. SmallDC motors are used in tools, toys, and appliances. DC Motor (Overview)  There are 4 main types of DC motors: Permanent Magnet DC Motors. The permanent magnet motor uses a permanent magnet to create field flux. Series DC Motors. In a series DC motor, the field is wound with a few turns of a large wire carrying the full armature current. Shunt DC Motors. Compound DC Motors. So now we are familiar with the motor let us interface it. Components Required: DC motor NodeMcu(ESP8266) Alexa echo. Connecting wires(male to male) Breadboard Relay Module Follow the Image below for circuit connection reference:- (Interfacing all

IoT Based LPG Gas Monitoring

MQ-5 Module(Overview ) In this tutorial, will learn, how to interface MQ-5 Module with Node Mcu(ESP8266). The Grove - Gas Sensor(MQ5) module is useful for gas leakage detection (in home and industry). It is suitable for detecting H2, LPG, CH4, CO, Alcohol. Due to its high sensitivity and fast response time, measurements can be taken as soon as possible. The sensitivity of the sensor can be adjusted by using the potentiometer. MQ-5 Module(backside) Components Required NodeMcu(ESP8266)  MQ-5 LPG SENSOR Module  Few male to female connecting wires  Breadboard  Follow the image below for circuit connection reference:- In this circuit, we have connected the A0 pin of the MQ-5 to the A0 pin of the NodeMcu module and D0 pin remain disconnected. After making the circuit dump the code given below:- // Karkhana Report // Analyse the volume of the gas using thingspeak.com // Hardware: NodeMCU,MQ-5 #include <ESP8266WiFi.h> String apiKey = "Enter the API key

IoT Based Humidity and Temperature Logging

Hey Folks, In this tutorial, we will learn, how to interface DHT 11 with Node Mcu(ESP8266 ).   The  DHT11  is a basic, ultra low-cost digital temperature and humidity sensor. It uses a capacitive humidity sensor and a thermistor to measure the surrounding air and spits out a digital signal on the data pin (no analog input pins needed). DHT11 Back Side DHT11-Internal Sensor Components Required NodeMcu(ESP8266)  DHT 11 SENSOR  Few male to female connecting wires  Breadboard Follow the image below for circuit connection reference. DHT11 Sensor connection with NodeMCU(WiFi-Module) In this circuit, we have connected the output pin to the D3 pin of the NodeMcu module and NC pin remain disconnected. After making the circuit dump the code given below. // Karkhana Report // temperature and humidity data using thingspeak.com // Hardware: NodeMCU,DHT11 #include <DHT.h> // Including library for dht #include <ESP8266WiFi.h> String apiKey = "TH

Interfacing of Push Button With ATmega16

In this tutorial, we will learn how to interface a switch(push button) with ATMEGA16 using AVR studio. In the previous video, we learnt how to interface LEDs with ATMEGA16 using AVR studio. The push-button is a component that connects two points in a circuit when you press it. The example turns on an LED when you press the button. Here we have connected two push button to PORT C in  PC0 & PC1. And for LEDs connection please refer my previous blog. Components Required:- AVR Controller(Atmega16) LEDs Push Button Connecting Wires USBASP Programmer Dump the following code after connection  and select chip ATMEGA 16. #include<avr/io.h> #include<util/delay.h> void main()  {    DDRB=0b11111111;    int S1;    int S2;      while(1)    {     S1=PINC&0b00000001;     S2=PINC&0b00000010;     if(S1==0b00000001)     {      PORTB=0b00000001;      _delay_ms(100);      }      if(S2==0b00000010)     {      PORTB=0b00000010;      _delay_ms(100);  

16x2 LCD Interfacing with Arduino

In this tutorial, we will learn, how to interface an LCD (liquid crystal display) with ARDUINO.  An LCD screen is an electronic display module having a flat panel display or we can say it’s an electronically modulated optical device that uses the light modulating properties of liquid crystals. We will interface a 16x2(16 columns and 2 rows) LCD. Other variations are also available like 8x1,10x2 etc. It is having a wide range of applications; they are also preferred over the 7-segment display as they are cheap, easily programmable and also have the leverage to display special characters. Now let us interface Components Required 16x2 LCD                   1No. Resistor 560ohms        1No. Potentiometer 10k      1No. Arduino UNO               1No. Few connecting wires Breadboard Follow the image below for circuit connection reference. After making the circuit dump the code given below. #include<LiquidCrystal.h> LiquidCry

Basics of Embedded System Design on AVR

In this tutorial, we will learn how to interface LED with Atmega16 using AVR Studio . An embedded system is built around a processor. The design goals of an embedded system are to reduce size, cost and power consumption and to increase performance and reliability. The microprocessor we are using is ATMEGA16 . The processor has limited internal memory, and if this is not sufficient for a given application external memory devices are used. The hardware also includes any components that facilitate the user-application interaction such as display units, keypad. The light-emitting diodes are used for getting status information, such as power on, check output(high/low). You all must have observed led decoration lights, which can glow in different patterns. First, we will learn to interface a single Led and then 8 LEDs to learn a simple toggling technique. Components Required:- AVR controller(Atmega16) LEDs Connecting wires USBASP Programmer For

Servo Motor Interfacing with Arduino

In this tutorial, we will learn how to interface a servo motor using Arduino UNO. The motor inside the setup of a servo is attached by gears to the control wheel. When the motor rotates, the potentiometer’s resistance changes hence the control circuit can precisely regulate how much movement there is and in which direction. The motor’s speed is proportional to the difference between its actual position and desired position. When the shaft is near the desired position it turns slowly else fast. This is called proportional control. They are controlled by sending PWM (pulse width modulated) signals through the control wire. They are available in many sizes and are of three types Positional rotation  Continuous rotation  Linear The most common type is the positional rotational one. So now we are familiar with the motor let us interface it Components Required: Servo motor 1No Arduino UNO 1No Few connecting wires Breadboard Follow the video below for cir

4x4x4 Arduino LED Cube

Since now we all have worked a lot with led,s let us show you one of the projects made by us with the help of bulk of led,s. A led matrix cube Below is the video of our project. Working description: The above is made by combining led,s in a regular fashion in cubical shape. All types of patterns can be generated in the cube and also various shapes like square, triangle etc. Whatever pattern comes to your mind you can generate that by altering the code. Curious to learn what you saw. Thinking? Join our hands-on training courses. To know more visit us at  https://karkhana.club/