Skip to main content

Posts

Showing posts with the label Educatiom

Servo Motor Control using ESP8266 and Blynk App

Hey folks,  In this tutorial we will learn how to interface Servo motor with NodeMcu(ESP8266)module and operate it with the Blynk app.  Servos  are controlled by sending an electrical pulse of variable width, or pulse width modulation (PWM), through the control wire. There is a minimum pulse, a maximum pulse, and a repetition rate. A  servo motor  can usually only turn 90° in either direction for a total of 180° movement. servo Motor (Back view)  Servo Motor (front view) Blynk  is a Platform with iOS and Android  apps  to control Arduino, Raspberry Pi and the likes over the Internet. It's a digital dashboard where you can build a graphic interface for your project by simply dragging and dropping widgets. (Blynk App) Components Required: Servo motor NodeMcu(ESP8266) Connecting wires(male to male) Breadboard    Follow the image below for circuit connection reference. (Servo Motor connecting with NodeMcu) In this circuit, we have connect

RGB LED Using Accelerometer and ARM

Hey Folks, In this tutorial, we will learn, how to change the colour of RGB LED using accelerometer of the ARM (FRDM-KL25Z). INTRODUCTION The FRDM-KL25Z is an ultra-low-cost development platform for Kinetis L Series KL1x (KL14/15) and KL2x (KL24/25) MCUs built on ARM® Cortex™-M0+ processor.  The FRDM-KL25Z has been designed by NXP in collaboration with mbed for prototyping all sorts of devices, especially those requiring the size and price point offered by Cortex-M0+ and the power of USB Host and Device. The FRDM-KL25Z is supported by a range of NXP and third-party development software. It is packaged as a development board with connectors to break out to stripboard and breadboard and includes a built-in USB FLASH programmer.               FEATURES NXP KL25Z Kinetis KL2x MCU (MKL25Z128VLK4) High-performance ARM® Cortex™-M0+ Core 48MHz, 16KB RAM, 128KB FLASH USB (Host/Device) SPI (2) I2C (2) UART (3) PWM (TPM) ADC (16 bit) DAC (1x 12bit) Touch Se

Alexa Based Motor Controlling

In this tutorial, we will learn how to interface DC Motor with NodeMcu by using Relay Module controlling with Alexa echo. with voice API. A DC motor is any of a class of rotary electrical machines that converts direct current electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. SmallDC motors are used in tools, toys, and appliances. DC Motor (Overview)  There are 4 main types of DC motors: Permanent Magnet DC Motors. The permanent magnet motor uses a permanent magnet to create field flux. Series DC Motors. In a series DC motor, the field is wound with a few turns of a large wire carrying the full armature current. Shunt DC Motors. Compound DC Motors. So now we are familiar with the motor let us interface it. Components Required: DC motor NodeMcu(ESP8266) Alexa echo. Connecting wires(male to male) Breadboard Relay Module Follow the Image below for circuit connection reference:- (Interfacing all

Interfacing of Push Button With ATmega16

In this tutorial, we will learn how to interface a switch(push button) with ATMEGA16 using AVR studio. In the previous video, we learnt how to interface LEDs with ATMEGA16 using AVR studio. The push-button is a component that connects two points in a circuit when you press it. The example turns on an LED when you press the button. Here we have connected two push button to PORT C in  PC0 & PC1. And for LEDs connection please refer my previous blog. Components Required:- AVR Controller(Atmega16) LEDs Push Button Connecting Wires USBASP Programmer Dump the following code after connection  and select chip ATMEGA 16. #include<avr/io.h> #include<util/delay.h> void main()  {    DDRB=0b11111111;    int S1;    int S2;      while(1)    {     S1=PINC&0b00000001;     S2=PINC&0b00000010;     if(S1==0b00000001)     {      PORTB=0b00000001;      _delay_ms(100);      }      if(S2==0b00000010)     {      PORTB=0b00000010;      _delay_ms(100);  

16x2 LCD Interfacing with Arduino

In this tutorial, we will learn, how to interface an LCD (liquid crystal display) with ARDUINO.  An LCD screen is an electronic display module having a flat panel display or we can say it’s an electronically modulated optical device that uses the light modulating properties of liquid crystals. We will interface a 16x2(16 columns and 2 rows) LCD. Other variations are also available like 8x1,10x2 etc. It is having a wide range of applications; they are also preferred over the 7-segment display as they are cheap, easily programmable and also have the leverage to display special characters. Now let us interface Components Required 16x2 LCD                   1No. Resistor 560ohms        1No. Potentiometer 10k      1No. Arduino UNO               1No. Few connecting wires Breadboard Follow the image below for circuit connection reference. After making the circuit dump the code given below. #include<LiquidCrystal.h> LiquidCry

Multicolor Bulb Using Arduino Project

Since now we are all familiar with RGB LED’s let us show you one of the products made by us (  Karkhana Makerspace ). The below is the video of our product (Mobile Control RGB Bulb) Working description: It is a decoration lamp which can be used to lighten your home according to your mood or occasion. The color selection of the lamp is simply controlled with the help of our app. The concept is the same as I have mentioned in my previous blogs here we are giving instructions wireless via Bluetooth to the controller which drives the lamp. For any detail or query regarding the above project, Contact us at hello@karkhana.club Thinking? Join our hands-on training courses. To know more visit us at  https://karkhana.club/

LED Pattern with Arduino

Alright since now we know how to interface a LED let’s have some fun generating patterns with multiple LED. Components Required Resistor                    4 No. 330Ohms(Standard Red LED and 5V input supply) LEDs                        4 No. Arduino UNO          1No. Connecting wires Breadboard In this blog, we have generated a shifting glowing pattern of LEDs. For circuit, connections see below After building the circuit dump the code given below. int led1 = 1; int led2 = 2; int led3 = 3; int led4 = 4; void setup()  { pinMode(led1, OUTPUT); pinMode(led2, OUTPUT); pinMode(led3, OUTPUT); pinMode(led4, OUTPUT); } void loop() { digitalWrite(led1, HIGH); // turn the LED on (HIGH is the voltage level) delay(500); digitalWrite(led1, LOW); // turn the LED off by making the voltage LOW delay(500); digitalWrite(led2, HIGH); // turn the LED on (HIGH is the voltage level) delay(500); digitalWrite(led2, LOW); // turn the LED off by making the voltage LOW delay(500); d